2008年03月01日

Chapter 3: THE NATURE OF TECHNOLOGY

Chapter 3: THE NATURE OF TECHNOLOGY

TECHNOLOGY AND SCIENCE

DESIGN AND SYSTEMS

ISSUES IN TECHNOLOGY


Chapter 3: THE NATURE OF TECHNOLOGY

[3-1]

As long as there have been people, there has been technology. Indeed, the techniques of shaping tools are taken as the chief evidence of the beginning of human culture. On the whole, technology has been a powerful force in the development of civilization, all the more so as its link with science has been forged. Technology—like language, ritual, values, commerce, and the arts—is an intrinsic part of a cultural system and it both shapes and reflects the system's values. In today's world, technology is a complex social enterprise that includes not only research, design, and crafts but also finance, manufacturing, management, labor, marketing, and maintenance.

[3-2]

In the broadest sense, technology extends our abilities to change the world: to cut, shape, or put together materials; to move things from one place to another; to reach farther with our hands, voices, and senses. We use technology to try to change the world to suit us better. The changes may relate to survival needs such as food, shelter, or defense, or they may relate to human aspirations such as knowledge, art, or control. But the results of changing the world are often complicated and unpredictable. They can include unexpected benefits, unexpected costs, and unexpected risks—any of which may fall on different social groups at different times. Anticipating the effects of technology is therefore as important as advancing its capabilities.

[3-3]

This chapter presents recommendations on what knowledge about the nature of technology is required for scientific literacy and emphasizes ways of thinking about technology that can contribute to using it wisely. The ideas are sorted into three sections: the connection of science and technology, the principles of technology itself, and the connection of technology and society. Chapter 8, The Designed World, presents principles relevant to some of the key technologies of today's world. Chapter 10, Historical Perspectives, includes a discussion of the Industrial Revolution. Chapter 12, Habits of Mind, includes some skills relevant to participating in a technological world.

[3-4]

TECHNOLOGY AND SCIENCE

Technology Draws on Science and Contributes to It

In earlier times, technology grew out of personal experience with the properties of things and with the techniques for manipulating them, out of know-how handed down from experts to apprentices over many generations. The know-how handed down today is not only the craft of single practitioners but also a vast literature of words, numbers, and pictures that describe and give directions. But just as important as accumulated practical knowledge is the contribution to technology that comes from understanding the principles that underlie how things behave—that is, from scientific understanding.

[3-5]

Engineering, the systematic application of scientific knowledge in developing and applying technology, has grown from a craft to become a science in itself. Scientific knowledge provides a means of estimating what the behavior of things will be even before we make them or observe them. Moreover, science often suggests new kinds of behavior that had not even been imagined before, and so leads to new technologies. Engineers use knowledge of science and technology, together with strategies of design, to solve practical problems.

[3-6]

In return, technology provides the eyes and ears of science—and some of the muscle, too. The electronic computer, for example, has led to substantial progress in the study of weather systems, demographic patterns, gene structure, and other complex systems that would not have been possible otherwise. Technology is essential to science for purposes of measurement, data collection, treatment of samples, computation, transportation to research sites (such as Antarctica, the moon, and the ocean floor), sample collection, protection from hazardous materials, and communication. More and more, new instruments and techniques are being developed through technology that make it possible to advance various lines of scientific research.

[3-7]

Technology does not just provide tools for science, however; it also may provide motivation and direction for theory and research. The theory of the conservation of energy, for example, was developed in large part because of the technological problem of increasing the efficiency of commercial steam engines. The mapping of the locations of the entire set of genes in human DNA has been motivated by the technology of genetic engineering, which both makes such mapping possible and provides a reason for doing so.

[3-8]

As technologies become more sophisticated, their links to science become stronger. In some fields, such as solid-state physics (which involves transistors and superconductors), the ability to make something and the ability to study it are so interdependent that science and engineering can scarcely be separated. New technology often requires new understanding; new investigations often require new technology.

[3-9]

Engineering Combines Scientific Inquiry and Practical Values

The component of technology most closely allied to scientific inquiry and to mathematical modeling is engineering. In its broadest sense, engineering consists of construing a problem and designing a solution for it. The basic method is to first devise a general approach and then work out the technical details of the construction of requisite objects (such as an automobile engine, a computer chip, or a mechanical toy) or processes (such as irrigation, opinion polling, or product testing).

[3-10]

Much of what has been said about the nature of science applies to engineering as well, particularly the use of mathematics, the interplay of creativity and logic, the eagerness to be original, the variety of people involved, the professional specialties, public responsibility, and so on. Indeed, there are more people called engineers than people called scientists, and many scientists are doing work that could be described as engineering as well as science. Similarly, many engineers are engaged in science.

[3-11]

Scientists see patterns in phenomena as making the world understandable; engineers also see them as making the world manipulable. Scientists seek to show that theories fit the data; mathematicians seek to show logical proof of abstract connections; engineers seek to demonstrate that designs work. Scientists cannot provide answers to all questions; mathematicians cannot prove all possible connections; engineers cannot design solutions for all problems.

[3-12]

But engineering affects the social system and culture more directly than scientific research, with immediate implications for the success or failure of human enterprises and for personal benefit and harm. Engineering decisions, whether in designing an airplane bolt or an irrigation system, inevitably involve social and personal values as well as scientific judgments.

[3-13]

DESIGN AND SYSTEMS

The Essence of Engineering Is Design Under Constraint

Every engineering design operates within constraints that must be identified and taken into account. One type of constraint is absolute—for example, physical laws such as the conservation of energy or physical properties such as limits of flexibility, electrical conductivity, and friction. Other types have some flexibility: economic (only so much money is available for this purpose), political (local, state, and national regulations), social (public opposition), ecological (likely disruption of the natural environment), and ethical (disadvantages to some people, risk to subsequent generations). An optimum design takes into account all the constraints and strikes some reasonable compromise among them. Reaching such design compromises—including, sometimes, the decision not to develop a particular technology further—requires taking personal and social values into account. Although design may sometimes require only routine decisions about the combining of familiar components, often it involves great creativity in inventing new approaches to problems, new components, and new combinations—and great innovation in seeing new problems or new possibilities.

[3-14]

But there is no perfect design. Accommodating one constraint well can often lead to conflict with others. For example, the lightest material may not be the strongest, or the most efficient shape may not be the safest or the most aesthetically pleasing. Therefore every design problem lends itself to many alternative solutions, depending on what values people place on the various constraints. For example, is strength more desirable than lightness, and is appearance more important than safety? The task is to arrive at a design that reasonably balances the many trade-offs, with the understanding that no single design is ever simultaneously the safest, the most reliable, the most efficient, the most inexpensive, and so on.

[3-15]

It is seldom practical to design an isolated object or process without considering the broad context in which it will be used. Most products of technology have to be operated, maintained, occasionally repaired, and ultimately replaced. Because all these related activities bear costs, they too have to be considered. A similar issue that is becoming increasingly important with more complex technologies is the need to train personnel to sell, operate, maintain, and repair them. Particularly when technology changes quickly, training can be a major cost. Thus, keeping down demands on personnel may be another design constraint.

[3-16]

Designs almost always require testing, especially when the design is unusual or complicated, when the final product or process is likely to be expensive or dangerous, or when failure has a very high cost. Performance tests of a design may be conducted by using complete products, but doing so may be prohibitively difficult or expensive. So testing is often done by using small-scale physical models, computer simulations, analysis of analogous systems (for example, laboratory animals standing in for humans, earthquake disasters for nuclear disasters), or testing of separate components only.

[3-17]

All Technologies Involve Control

All systems, from the simplest to the most complex, require control to keep them operating properly. The essence of control is comparing information about what is happening with what we want to happen and then making appropriate adjustments. Control typically requires feedback (from sensors or other sources of information) and logical comparisons of that information to instructions (and perhaps to other data input)—and a means for activating changes. For example, a baking oven is a fairly simple system that compares the information from a temperature sensor to a control setting and turns the heating element up or down to keep the temperature within a small range. An automobile is a more complex system, made up of subsystems for controlling engine temperature, combustion rate, direction, speed, and so forth, and for changing them when the immediate circumstances or instructions change. Miniaturized electronics makes possible logical control in a great variety of technical systems. Almost all but the simplest household appliances used today include microprocessors to control their performance.

[3-18]

As controls increase in complexity, they too require coordination, which means additional layers of control. Improvement in rapid communication and rapid processing of information makes possible very elaborate systems of control. Yet all technological systems include human as well as mechanical or electronic components. Even the most automatic system requires human control at some point—to program the built-in control elements, monitor them, take over from them when they malfunction, and change them when the purposes of the system change. The ultimate control lies with people who understand in some depth what the purpose and nature of the control process are and the context within which the process operates.

[3-19]

Technologies Always Have Side Effects

In addition to its intended benefits, every design is likely to have unintended side effects in its production and application. On the one hand, there may be unexpected benefits. For example, working conditions may become safer when materials are molded rather than stamped, and materials designed for space satellites may prove useful in consumer products. On the other hand, substances or processes involved in production may harm production workers or the public in general; for example, sitting in front of a computer may strain the user's eyes and lead to isolation from other workers. And jobs may be affected—by increasing employment for people involved in the new technology, decreasing employment for others involved in the old technology, and changing the nature of the work people must do in their jobs.

[3-20]

It is not only large technologies—nuclear reactors or agriculture—that are prone to side effects, but also the small, everyday ones. The effects of ordinary technologies may be individually small but collectively significant. Refrigerators, for example, have had a predictably favorable impact on diet and on food distribution systems. Because there are so many refrigerators, however, the tiny leakage of a gas used in their cooling systems may have substantial adverse effects on the earth's atmosphere.

[3-21]

Some side effects are unexpected because of a lack of interest or resources to predict them. But many are not predictable even in principle because of the sheer complexity of technological systems and the inventiveness of people in finding new applications. Some unexpected side effects may turn out to be ethically, aesthetically, or economically unacceptable to a substantial fraction of the population, resulting in conflict between groups in the community. To minimize such side effects, planners are turning to systematic risk analysis. For example, many communities require by law that environmental impact studies be made before they will consider giving approval for the introduction of a new hospital, factory, highway, waste-disposal system, shopping mall, or other structure.

[3-22]

Risk analysis, however, can be complicated. Because the risk associated with a particular course of action can never be reduced to zero, acceptability may have to be determined by comparison to the risks of alternative courses of action, or to other, more familiar risks. People's psychological reactions to risk do not necessarily match straightforward mathematical models of benefits and costs. People tend to perceive a risk as higher if they have no control over it (smog versus smoking) or if the bad events tend to come in dreadful peaks (many deaths at once in an airplane crash versus only a few at a time in car crashes). Personal interpretation of risks can be strongly influenced by how the risk is stated—for example, comparing the probability of dying versus the probability of surviving, the dreaded risks versus the readily acceptable risks, the total costs versus the costs per person per day, or the actual number of people affected versus the proportion of affected people.

[3-23]

All Technological Systems Can Fail

Most modern technological systems, from transistor radios to airliners, have been engineered and produced to be remarkably reliable. Failure is rare enough to be surprising. Yet the larger and more complex a system is, the more ways there are in which it can go wrong—and the more widespread the possible effects of failure. A system or device may fail for different reasons: because some part fails, because some part is not well matched to some other, or because the design of the system is not adequate for all the conditions under which it is used. One hedge against failure is overdesign—that is, for example, making something stronger or bigger than is likely to be necessary. Another hedge is redundancy—that is, building in one backup system or more to take over in case the primary one fails.

[3-24]

If failure of a system would have very costly consequences, the system may be designed so that its most likely way of failing would do the least harm. Examples of such "fail-safe" designs are bombs that cannot explode when the fuse malfunctions; automobile windows that shatter into blunt, connected chunks rather than into sharp, flying fragments; and a legal system in which uncertainty leads to acquittal rather than conviction. Other means of reducing the likelihood of failure include improving the design by collecting more data, accommodating more variables, building more realistic working models, running computer simulations of the design longer, imposing tighter quality control, and building in controls to sense and correct problems as they develop.

[3-25]

All of the means of preventing or minimizing failure are likely to increase cost. But no matter what precautions are taken or resources invested, risk of technological failure can never be reduced to zero. Analysis of risk, therefore, involves estimating a probability of occurrence for every undesirable outcome that can be foreseen—and also estimating a measure of the harm that would be done if it did occur. The expected importance of each risk is then estimated by combining its probability and its measure of harm. The relative risk of different designs can then be compared in terms of the combined probable harm resulting from each.

[3-26]

ISSUES IN TECHNOLOGY

The Human Presence

The earth's population has already doubled three times during the past century. Even at that, the human presence, which is evident almost everywhere on the earth, has had a greater impact than sheer numbers alone would indicate. We have developed the capacity to dominate most plant and animal species—far more than any other species can—and the ability to shape the future rather than merely respond to it.

[3-27]

Use of that capacity has both advantages and disadvantages. On the one hand, developments in technology have brought enormous benefits to almost all people. Most people today have access to goods and services that were once luxuries enjoyed only by the wealthy—in transportation, communication, nutrition, sanitation, health care, entertainment, and so on. On the other hand, the very behavior that made it possible for the human species to prosper so rapidly has put us and the earth's other living organisms at new kinds of risk. The growth of agricultural technology has made possible a very large population but has put enormous strain on the soil and water systems that are needed to continue sufficient production. Our antibiotics cure bacterial infection, but may continue to work only if we invent new ones faster than resistant bacterial strains emerge.

[3-28]

Our access to and use of vast stores of fossil fuels have made us dependent on a nonrenewable resource. In our present numbers, we will not be able to sustain our way of living on the energy that current technology provides, and alternative technologies may be inadequate or may present unacceptable hazards. Our vast mining and manufacturing efforts produce our goods, but they also dangerously pollute our rivers and oceans, soil, and atmosphere. Already, by-products of industrialization in the atmosphere may be depleting the ozone layer, which screens the planet's surface from harmful ultraviolet rays, and may be creating a buildup of carbon dioxide, which traps heat and could raise the planet's average temperatures significantly. The environmental consequences of a nuclear war, among its other disasters, could alter crucial aspects of all life on earth.

[3-29]

From the standpoint of other species, the human presence has reduced the amount of the earth's surface available to them by clearing large areas of vegetation; has interfered with their food sources; has changed their habitats by changing the temperature and chemical composition of large parts of the world environment; has destabilized their ecosystems by introducing foreign species, deliberately or accidentally; has reduced the number of living species; and in some instances has actually altered the characteristics of certain plants and animals by selective breeding and more recently by genetic engineering.

[3-30]

What the future holds for life on earth, barring some immense natural catastrophe, will be determined largely by the human species. The same intelligence that got us where we are—improving many aspects of human existence and introducing new risks into the world—is also our main resource for survival.

[3-31]

Technological and Social Systems Interact Strongly

Individual inventiveness is essential to technological innovation. Nonetheless, social and economic forces strongly influence what technologies will be undertaken, paid attention to, invested in, and used. Such decisions occur directly as a matter of government policy and indirectly as a consequence of the circumstances and values of a society at any particular time. In the United States, decisions about which technological options will prevail are influenced by many factors, such as consumer acceptance, patent laws, the availability of risk capital, the federal budget process, local and national regulations, media attention, economic competition, tax incentives, and scientific discoveries. The balance of such incentives and regulations usually bears differently on different technological systems, encouraging some and discouraging others.

[3-32]

Technology has strongly influenced the course of history and the nature of human society, and it continues to do so. The great revolutions in agricultural technology, for example, have probably had more influence on how people live than political revolutions; changes in sanitation and preventive medicine have contributed to the population explosion (and to its control); bows and arrows, gunpowder, and nuclear explosives have in their turn changed how war is waged; and the microprocessor is changing how people write, compute, bank, operate businesses, conduct research, and communicate with one another. Technology is largely responsible for such large-scale changes as the increased urbanization of society and the dramatically growing economic interdependence of communities worldwide.

[3-33]

Historically, some social theorists have believed that technological change (such as industrialization and mass production) causes social change, whereas others have believed that social change (such as political or religious changes) leads to technological change. However, it is clear that because of the web of connections between technological and other social systems, many influences act in both directions.

[3-34]

The Social System Imposes Some Restrictions on Openness in Technology

For the most part, the professional values of engineering are very similar to those of science, including the advantages seen in the open sharing of knowledge. Because of the economic value of technology, however, there are often constraints on the openness of science and engineering that are relevant to technological innovation. A large investment of time and money and considerable commercial risk are often required to develop a new technology and bring it to market. That investment might well be jeopardized if competitors had access to the new technology without making a similar investment, and hence companies are often reluctant to share technological knowledge. But no scientific or technological knowledge is likely to remain secret for very long. Secrecy most often provides only an advantage in terms of time—a head start, not absolute control of knowledge. Patent laws encourage openness by giving individuals and companies control over the use of any new technology they develop; however, to promote technological competition, such control is only for a limited period of time.

[3-35]

Commercial advantage is not the only motivation for secrecy and control. Much technological development occurs in settings, such as government agencies, in which commercial concerns are minimal but national security concerns may lead to secrecy. Any technology that has potential military applications can arguably be subject to restrictions imposed by the federal government, which may limit the sharing of engineering knowledge—or even the exportation of products from which engineering knowledge could be inferred. Because the connections between science and technology are so close in some fields, secrecy inevitably begins to restrict some of the free flow of information in science as well. Some scientists and engineers are very uncomfortable with what they perceive as a compromise of the scientific ideal, and some refuse to work on projects that impose secrecy. Others, however, view the restrictions as appropriate.

[3-36]

Decisions About the Use of Technology Are Complex

Most technological innovations spread or disappear on the basis of free-market forces—that is, on the basis of how people and companies respond to such innovations. Occasionally, however, the use of some technology becomes an issue subject to public debate and possibly formal regulation. One way in which technology becomes such an issue is when a person, group, or business proposes to test or introduce a new technology—as has been the case with contour plowing, vaccination, genetic engineering, and nuclear power plants. Another way is when a technology already in widespread use is called into question—as, for example, when people are told (by individuals, organizations, or agencies) that it is essential to stop or reduce the use of a particular technology or technological product that has been discovered to have, or that may possibly have, adverse effects. In such instances, the proposed solution may be to ban the burial of toxic wastes in community dumps, or to prohibit the use of leaded gasoline and asbestos insulation.

[3-37]

Rarely are technology-related issues simple and one-sided. Relevant technical facts alone, even when known and available (which often they are not), usually do not settle matters entirely in favor of one side or the other. The chances of reaching good personal or collective decisions about technology depend on having information that neither enthusiasts nor skeptics are always ready to volunteer. The long-term interests of society are best served, therefore, by having processes for ensuring that key questions concerning proposals to curtail or introduce technology are raised and that as much relevant knowledge as possible is brought to bear on them. Considering these questions does not ensure that the best decision will always be made, but the failure to raise key questions will almost certainly result in poor decisions. The key questions concerning any proposed new technology should include the following:

[3-38]

  • What are alternative ways to accomplish the same ends? What advantages and disadvantages are there to the alternatives? What trade-offs would be necessary between positive and negative side effects of each?
  • Who are the main beneficiaries? Who will receive few or no benefits? Who will suffer as a result of the proposed new technology? How long will the benefits last? Will the technology have other applications? Whom will they benefit?
  • What will the proposed new technology cost to build and operate? How does that compare to the cost of alternatives? Will people other than the beneficiaries have to bear the costs? Who should underwrite the development costs of a proposed new technology? How will the costs change over time? What will the social costs be?
  • What risks are associated with the proposed new technology? What risks are associated with not using it? Who will be in greatest danger? What risk will the technology present to other species of life and to the environment? In the worst possible case, what trouble could it cause? Who would be held responsible? How could the trouble be undone or limited?
  • What people, materials, tools, knowledge, and know-how will be needed to build, install, and operate the proposed new technology? Are they available? If not, how will they be obtained, and from where? What energy sources will be needed for construction or manufacture, and also for operation? What resources will be needed to maintain, update, and repair the new technology?
  • What will be done to dispose safely of the new technology's waste materials? As it becomes obsolete or worn out, how will it be replaced? And finally, what will become of the material of which it was made and the people whose jobs depended on it?
[3-39]

Individual citizens may seldom be in a position to ask or demand answers for these questions on a public level, but their knowledge of the relevance and importance of answers increases the attention given to the questions by private enterprise, interest groups, and public officials. Furthermore, individuals may ask the same questions with regard to their own use of technology—for instance, their own use of efficient household appliances, of substances that contribute to pollution, of foods and fabrics. The cumulative effect of individual decisions can have as great an impact on the large-scale use of technology as pressure on public decisions can.

[3-40]

Not all such questions can be answered readily. Most technological decisions have to be made on the basis of incomplete information, and political factors are likely to have as much influence as technical ones, and sometimes more. But scientists, mathematicians, and engineers have a special role in looking as far ahead and as far afield as is practical to estimate benefits, side effects, and risks. They can also assist by designing adequate detection devices and monitoring techniques, and by setting up procedures for the collection and statistical analysis of relevant data.

posted by 黒影 at 18:13| Comment(36) | TrackBack(7) | Science for All Americans | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
[3-1]
人類が現れた当初から技術は存在した。実際、道具を形作る技は人類の文化の始まりの核となる証拠と考えられている。
大筋では、技術は文明を発展させてきた強い力であり、だからこそ科学と技術の結びつき同様ゆっくりと進歩してきた。
言語や儀礼、価値観、商業、芸術と同様、技術は文化システムにもともと備わっているものであり、その文化の価値観を形作ると同時に反映しているものである。
今日では、技術は研究やデザイン、技法にとどまらず、金融や大量生産、マネージメント、労働、マーケティング、維持管理まで含む複雑な社会活動となっている。
Posted by hiroo at 2008年03月03日 00:54
>hirooさん
はじめまして。
当プロジェクトへのご参加誠にありがとうございます。
これからもどうぞよろしくお願いいたします。
Posted by 黒影 at 2008年03月05日 22:25
[3-6]
その見返りとして、技術は科学の目や耳となる―ときには筋肉にも。電子計算機を例に挙げてみよう。それまで他の方法では不可能であった気象、人口動態, 遺伝子構造などの複雑な機構の研究に、電子計算機は大幅な進歩をもたらした。科学にとって技術は様々な場面において不可欠である。すなわち、測定、データ収集、資料の取り扱い、計算、現場への移動(たとえば南極,月、海底など)、資料の採取、危険な材料からの保護、コミュニケーションといった場面で。新しい機器やテクニックは技術によって次々に開発され、多様な専門分野での科学研究を可能にしている。
Posted by Soda at 2008年03月28日 12:28
[3-7]
しかしながら、技術は単なる科学の道具ではない。理論や研究を動機づけ、方向性を与えるものでもある。たとえばエネルギー保存則が確立されたのは、主として商業用蒸気機関の効率を上げるという技術的問題を解決するためであった。ヒトDNAの全塩基配列のマッピングにおいて、遺伝子工学の技術はマッピングそれ自体を可能にすると同時に、マッピングをする目的でもあった。
Posted by Soda at 2008年03月28日 17:22
3章を部分的に訳し始めようかと思っていたのですが、どなたかがもう訳し始めている部分があれば、書き込んでもらえれば重複しないように訳していこうと思います。

黒影さんも3章を始めるようですけれど、どのあたりの段落を訳されます?
Posted by Yamanaka at 2008年03月29日 07:59
>黒影さん
お騒がせして済みませんでした。
コメントは書き込めるようになりました。

>Yamanakaさん
[3-4]から[3-8]まで訳そうと思います。
Posted by Soda at 2008年03月29日 08:55
幻影随想を時々覗かせて頂いている者です。
プロジェクトに興味はあったのですが、提示の時点では些か多忙だったため参加を見送っていました。ここへきてやや余裕ができたので、進捗率の低い第3章のお手伝いができればと思い、[3-9]〜[3-16]を訳してみました。
十分推敲できてはいないと思いますが、ここはとりあえずプロジェクトを進行させるために as it is でアップします。
どなたかと重複しましたらご容赦を。
訳文は次コメントからとします。
Posted by TAKIN at 2008年03月30日 22:54
[3-9]
工学は科学的探究と実用的価値を結びつける

技術の諸要素のうちで、科学的探究や数学的モデリングに最も関係が深いのは工学(エンジニアリング)である。工学とは最も広い意味では、問題を構成することと、その解決法を計画することから成っている。その基本的な方法として、まず一般的なアプローチを考案し、次に目的とする対象物(自動車エンジン、コンピュータチップ、機械式玩具など)またはプロセス(灌漑、世論調査、製品試験など)を作り上げるための技術的な細部を仕上げる。
Posted by TAKIN at 2008年03月30日 22:58
[3-10]
科学の本質についてこれまでに述べたことの多くは工学にもあてはまる。特に数学の利用、創造力と論理の相互作用、独創性への熱意、関与する人物の多様性、職業的専門化、公的責任などがそうである。実際、今では技術者(エンジニア)と呼ばれる人の方が科学者と呼ばれる人よりも多いし、多くの科学者は科学とも工学とも言えるような仕事をしている。同様に技術者にも科学に関わっている人は少なくない。
Posted by TAKIN at 2008年03月30日 22:59
[3-11]
科学者は様々な現象のうちに、世界を理解可能にするようなパターンを見出す。技術者もそのようなパターンを見出すが、それは世界を操作可能にするものとしてである。科学者は理論がデータに一致することを示そうとし、数学者は抽象的関係の論理的証明を示そうとするのに対して、技術者は設計が実用可能であることを示そうとする。科学者がすべての問いに答えられるわけではなく、数学者がすべての関係を証明できるわけではないのと同様に、技術者はすべての問題に対して解決策を設計できるわけではない。
Posted by TAKIN at 2008年03月30日 22:59
[3-12]
しかし工学は科学にくらべて、社会システムや文化に一層直接的な影響を及ぼす。それは人の或る企ての成否や個人的利害を直接左右するからである。航空機用ボルトであれ灌漑システムであれ、それを設計する際の工学上の決定には、科学的判断だけでなく、社会的・個人的価値観も必ず関係してくるものである。
Posted by TAKIN at 2008年03月30日 23:00
[3-13]
設計とシステム

工学の本質は制約条件下での設計である

工学的設計はすべて何らかの制約条件のもとで行われるものであって、まず制約を知り、それを考慮に入れて進めなければならない。制約の中でも、たとえばエネルギー保存則のような物理法則や、弾性限界・電気伝導度・摩擦などの物理的性質などは絶対的な制約である。一方、経済的制約(この仕事に使える金はこれだけ)、政治的制約(自治体、地域、全国の法規制)、社会的制約(世論の反対)、生態学的制約(自然環境の破壊)、倫理的制約(ある種の人々の不利益、後世へのリスク)などは多少伸縮性がある。これらの制約をすべて考慮したうえで、何らかの合理的な妥協点を見出せれば、それが最適な設計である。そのような妥協点(ある種の技術をこれ以上開発すべきでない、という決定も含まれる)を見出すためには、個人的・社会的価値観を考慮しなくてはならない。設計は、既知の要素を決まりきった方法で組み合わせるだけのルーティンな決定で済む場合もあるが、問題への新しいアプローチ、新しい構成要素、それらの新しい組み合わせなどを考え出すところに大きな創造性が現れることも多く、新しい問題や新しい可能性の発見が大きなぎ術革新につながることもある。
Posted by TAKIN at 2008年03月30日 23:02
[3-14]
しかし、完全な設計というものは存在しない。ある制約条件に適応しようとすれば他の条件と矛盾することになるのは珍しいことではない。たとえば最も軽い材料が必ずしも最も強い材料ではないし、最も効率的な形状が最も安全あるいは最も美しいとは限らない。したがって設計上のどのような問題に対しても、様々な制約に対する人々の価値観、たとえば軽量であることより強度が重要であるか、安全性より見かけが重要であるか、といったことに応じて複数の代替案が存在するものである。したがって設計の課題は、同時に最も安全、最も信頼性が高く、最も効率的、最も経済的、等々であるような唯一の設計はあり得ないということを了解した上で、これら多くの相反する要求のバランスを取ることである。
Posted by TAKIN at 2008年03月30日 23:04
[3-15]
ある対象物を、それが使用される環境を広く考えずに孤立して設計できることはまずない。工業製品の大部分は運転のほかに保守が、時々は修理が必要であり、最後には更新しなければならない。これらの関連作業はすべて費用がかかるので、そのコストも考慮する必要がある。これと同様な問題で、技術が複雑化するにつれてますます重大になっているのが販売、運転、修理に携わる人員の訓練である。特に技術変化が速いときは多額の訓練費用が必要になる。このため人に対する要求を低く抑えることも設計上の制約となることがある。
Posted by TAKIN at 2008年03月30日 23:06
[3-16]
設計にはほとんどの場合試験が必要であり、特に設計自体が非標準的あるいは複雑である場合、最終製品またはプロセスが高価あるいは危険である場合、故障が極めて高くつく場合などには不可欠である。設計を試験するには完成した実物を使うこともあるが、それが事実上不可能なほど困難な、あるいは高価につくこともあり、そのような場合には小規模な物理的モデル、コンピュータシミュレーション、類似システムの解析(ヒトの代わりに実験動物を用いる、原子力事故の代わりに地震災害を解析するなど)、あるいは個別部品のみの試験が行われる。
Posted by TAKIN at 2008年03月30日 23:06
とりあえず以上です。続きをやれるかどうかは現時点ではオープンですので、訳をされた方はご遠慮なくアップしてください。
Posted by TAKIN at 2008年03月30日 23:11
ども、週末ちょっと出かけていたもので返事が遅くなりました。
私はとりあえず3-36〜40を手初めに、最後から順にやっていこうかと思います。
Posted by 黒影 at 2008年03月30日 23:46
[3-17]

すべての技術は制御を有する

システムというものは、単純なものから複雑なものまで、自己の働きを適切に保つために「制御」を必要とする。制御の本質とは、現在起こっている事象と、起こしたい事象との比較、および、その後の適切な調節である。制御を行うには、通常以下のようなものが必要とされる
・センサーまたは他の情報源からのフィードバック
・その情報と、指示(入力されたデータ)との理論的な比較
・変更を実行するための手段

例えば、パンを焼くオーブンはかなり単純なシステムであるが、以下のような制御を行っている。
・温度センサーからの情報をフィードバック
・セット温度との比較
・温度変化を最小限に保つために、電熱線を点けたり消したりする

オートバイは、より複雑なシステムだが、エンジンの温度、燃焼率、方向、スピードなどを制御するサブシステムと、唐突な状況や指示の変化があったときに、それらを変更するサブシステムから構成されている。小型電子機器により、多種多様な技術システムの論理的制御が可能になった。とても単純なものを除くと、現在使われているほとんど全ての家庭用品が、性能を制御するためにマイクロプロセッサを有している。
Posted by みつ at 2008年04月02日 01:27
制御が複雑になるにつれ、それらはさらなる調整を強く必要とするようになる。つまり、さらにひとつ上の階層の制御が必要とされる。情報の高速通信や高速処理が発達すると、とても複雑な制御システムの構築が可能となる。けれども、すべての技術システムは、機械や電子部品だけでなく、人間という要素を含む。最も自動化されたようなシステムであっても、いくつかの管理点には人間が必要である。例えば、内臓されたコントロール要素のプログラミングや、監視、部品の誤動作時の交換、システムの目的変更時の対処は、人間にしかできない。最終的な制御は、システムの目的と、制御プロセスの性質、およびプロセスが動作する背景をある程度以上知っている人間が行う必要がある。
Posted by みつ at 2008年04月02日 01:29
段落番号入れ忘れました。[3-18]です。すいません。
Posted by みつ at 2008年04月02日 02:24
ではとりあえず、ちょっと区切りのある所からということで、[3-26]から後ろへ向かって訳していこうと思います。
Posted by Yamanaka at 2008年04月02日 07:40
では次のセクションを。相変わらず十分こなれてないところがありますが as is でご容赦を。

[3-19]
技術には必ず副作用がある

どのような設計も、その意図した利益のほかに意図しない副作用が生産・応用に際して生じる可能性がある。一方では思いがけない利益が得られることがある。たとえば材料の加工法を打ち抜きから鋳造に変えたことで労働環境の安全性が高まる、あるいは人工衛星用に開発された材料が消費者向け製品にも有用であることが判明する、といったことが起こり得る。他方では生産に用いられる物質やプロセスが作業者ないし一般公衆に有害であることもある。たとえばコンピュータの前に座り続けることは眼を疲れさせ、あるいは同僚からの孤立を招くだろう。また雇用にも影響がある。新技術に関わる人々の雇用が増え、旧い技術に関わる人々の雇用は減少するであろうし、また職場での作業内容も変化するかもしれない。

[3-20]
副作用を生むのは原子炉とか農業とかの大規模技術だけではない。日常的なちょっとした技術も同様なのである。通常の技術の影響は個々に見れば小さなものであっても、全体としては著しいものになる場合がある。たとえば冷蔵庫というものは、食生活や食品流通に好ましい影響を及ぼすことは明らかだが、非常に多くの冷蔵庫が存在しているため、それぞれから漏れ出すごく少量の冷媒が大気圏に少なからぬ影響を及ぼすのである。

[3-21]
副作用が予期できないのは、単に予測に関心がなかったため、あるいは予測のための資源がなかったためという場合もあるが、多くはそもそも原理的に予測不可能なのである。それはシステムが極めて複雑であること、また人がシステムを使うときに創造性を発揮して意外な使い方をすることがあることによる。ある副作用が倫理的、美的あるいは経済的に受け入れがたいと考える人がある程度以上存在すれば社会的対立を招くことになる。このような副作用を最小限に抑えるため、企画段階で系統的なリスク分析が行われるようになってきた。たとえば病院、工場、幹線道路、廃棄物処理場、ショッピングモール等々を新設するにあたって、環境影響調査を認可の条件とすることを条例で定めている自治体も少なくない。

[3-22]
しかしリスク分析が時として面倒な仕事であることは、次のような事情を考えれば理解されるであろう。ある種の行為に伴うリスクはゼロにはなり得ず、それが許容できるかどうかは別の方法のリスク、あるいは他のよく知られたリスクとの比較によって決定するしかない。リスクに対する心理的反応は必ずしも費用便益分析の簡単な数学モデルに一致するわけではなく、コントロールできないリスクは大きく感じられ(スモッグは喫煙より恐ろしい)、また大惨事のリスクは大きく感じられる(一度に大勢の死者を出す飛行機事故は、一回の死者がせいぜい数人である自動車の衝突事故より恐ろしい)。またリスクの表現方法も個人的反応に大きく影響する。たとえば死亡率と生存率、恐れられているリスクと許容しやすいリスク、全コストと1人1日あたりのコスト、影響を受ける人の実数と人口中の比率では、それぞれ印象が違うものだ。
Posted by TAKIN at 2008年04月02日 12:05
[3-26]-[3-30]トラックバックしました。
引き続き[3-31]-[3-33]を訳します。
Posted by Yamanaka at 2008年04月05日 11:37
Yamanakaさんの訳されたところの前まで埋めちゃいます。

[3-23]
技術的システムはすべて故障の可能性を持つ
最近の技術的システムは、トランジスタラジオから旅客機に至るまで、極めて信頼性が高くなっており、故障は驚くほど稀である。しかしシステムが大規模・複雑になるほど不具合の発生原因も多様になり、また故障したときの影響範囲も大きくなる。システムなり装置なりが故障する原因には様々なものがあり、ある部品の故障によることも、ある部品と他の部品とが十分適合しないためであることもあり、あるいはシステムの設計が必ずしもすべての使用条件に対して完全ではないことが原因である場合もある。故障を予防する方法としては、過剰設計(必要以上の強度や大きさなどを持たせること)や冗長性(1つ以上のバックアップシステムを設けて最初のシステムが故障したときにこれに代われるようにすること)などがある。

[3-24]
システムの故障が大きな経済的損失を招く場合には、最も害が少ない故障が最も起こりやすいように設計することが考えられ、これをフェイルセーフ設計と呼ぶ。たとえば信管が故障すると爆発しない爆弾、割れたときに鋭い破片が飛散せず角のない塊になって崩れるような自動車用ガラス窓といったものがこれに当たる。疑わしきを罰しない司法制度もこれに類するものといえよう。他にも故障の可能性を少なくする方法として、設計の際により多くのデータを集めること、より多くの変数を考慮すること、より現実的なモデルを構築すること、長期間にわたるコンピュータシミュレーションを行うこと、品質管理を厳格化すること、問題の発生を検知し対策を講じるような制御系を組み込むことなどがある。

[3-25]
故障を防止または最小限に抑える手段はいずれもコストを高める結果になる可能性が高いが、いかに注意を払い資源を投入したところで、故障の可能性をゼロにすることはできない。したがってリスク分析では、好ましくない結果として考えられるものすべての発生確率、およびそれらが発生したときの損害の程度を推定し、それらの組み合わせでリスクの大きさの期待値を評価するのである。このようにして、異なった設計に対して考えられる損害の期待値を用いて、それらの相対的リスクを比較することができる。
Posted by TAKIN at 2008年04月06日 13:38
[3-31]-[3-33]トラックバックしました。

他の章もほとんど埋まってきたという感じでかなり終わりに近づいてきましたね。3章だと未訳かつ未宣言な部分はあとは[3-34]と[3-35]が残っているだけだと思いますけれど、どなたか手をつけられてます? どなたもまだでしたら、週末までにはという感じで日本語訳を作れると思いますが。
Posted by Yamanaka at 2008年04月08日 07:44
>Yamanakaさん
まだ誰も手をつけていないと思うので、お願いします。
Posted by 黒影 at 2008年04月09日 20:47
[3-34],[3-35]トラックバックしておきました。
他の章を見ても、ちょこっとだけ残っている部分がありますが、もうほとんど終わりましたね。
Posted by Yamanaka at 2008年04月11日 21:12
技術は、より高度になるに従って、より強く科学と結びつく。固体物理学(トランジスタや半導体に関連した学問分野)のような一部の学問分野では、何かを作る能力とそれについて研究する能力は相互依存の関係にあって、科学とエンジニアリングが分離されることはまずない。新しい技術はしばしば新しい理解を必要とするし、新しい発明はしばしば新しい技術を必要とする。
Posted by Soda at 2008年04月14日 12:37
ごめんなさい、[3-8]です。
Posted by Soda at 2008年04月14日 12:38
[3-4]-[3-5]を上げました。これで3章は終わりです。
Posted by hoyt at 2008年04月26日 19:59
水着 ショップ <a href="http://www.gucciemergejp.biz/" title="財布 人気">財布 人気</a>
Posted by 財布 人気 at 2013年07月12日 04:28
水着 ビキニ <a href="http://www.gucciemployjp.biz/" title="gucci 新作">gucci 新作</a>
Posted by gucci 新作 at 2013年07月12日 04:30
マークバイ 人気財布 http://www.mlunqm.com/ [url=http://www.mlunqm.com/]人気財布[/url]
Posted by 人気財布 at 2013年08月01日 01:43
靴 通販
Posted by モンクレール moncler at 2013年08月05日 10:52
moncler アウトレット
Posted by ルブタン 通販 at 2013年08月06日 19:22
バス&ボディワークス
Posted by ダウン モンクレール at 2013年08月08日 08:31
コメントを書く
お名前: [必須入力]

メールアドレス:

ホームページアドレス:

コメント:

認証コード: [必須入力]


※画像の中の文字を半角で入力してください。

この記事へのトラックバック

Science For All American勝手に翻訳プロジェクト
Excerpt: 幻影随想さんがオーガナイザとなって勧められている「Science For All American勝手に翻訳プロジェクト」に微力ながら参加させていただくことにしました。 このプロジェク..
Weblog: Orbium -そらのたま-
Tracked: 2008-03-16 09:37

[3-26]-[3-30]
Excerpt: Science For All Americans 勝手に翻訳プロジェクト Ch
Weblog: (仮)SFAAを日本語で
Tracked: 2008-04-05 11:32

[3-31]-[3-33]
Excerpt: Science For All Americans 勝手に翻訳プロジェクト Ch
Weblog: (仮)SFAAを日本語で
Tracked: 2008-04-08 07:33

Chapter 3: THE NATURE OF TECHNOLOGY[3-36][3-37]
Excerpt: 新年度が始まってしばらく休んでいた翻訳を再開。 今回は3章の最後の部分。 かなり終わりに近づいた感じ。
Weblog: 幻影随想 別館
Tracked: 2008-04-09 22:56

[3-34],[3-35]
Excerpt: Science For All Americans 勝手に翻訳プロジェクト Ch
Weblog: (仮)SFAAを日本語で
Tracked: 2008-04-11 20:59

Science For All American -- Chap. 3 HISTORICAL PERSPECTIVES [3-38..40]
Excerpt: Science For All American -- Chapter 3: THE NATURE OF TECHNOLOGYの残りも、とりあえず訳してしまった。
Weblog: 忘却からの帰還
Tracked: 2008-04-21 21:28

[chapter 3]4th - 5th par in chap 3
Excerpt: [3-4] TECHNOLOGY AND SCIENCE Technology Draws on Science and Contributes to It 技術と科学 技術は科学を利用し科学に貢献..
Weblog: Science for all Japanese
Tracked: 2008-04-26 19:56
×

この広告は1年以上新しい記事の投稿がないブログに表示されております。